Strongly Chordal and Chordal Bipartite Graphs Are Sandwich Monotone

نویسندگان

  • Pinar Heggernes
  • Federico Mancini
  • Charis Papadopoulos
  • R. Sritharan
چکیده

A graph class is sandwich monotone if, for every pair of its graphs G1 = (V,E1) and G2 = (V,E2) with E1 ⊂ E2, there is an ordering e1, . . . , ek of the edges in E2 \E1 such that G = (V,E1 ∪ {e1, . . . , ei}) belongs to the class for every i between 1 and k. In this paper we show that strongly chordal graphs and chordal bipartite graphs are sandwich monotone, answering an open question by Bakonyi and Bono from 1997. So far, very few classes have been proved to be sandwich monotone, and the most famous of these are chordal graphs. Sandwich monotonicity of a graph class implies that minimal completions of arbitrary graphs into that class can be recognized and computed in polynomial time. For minimal completions into strongly chordal or chordal bipartite graphs no polynomial-time algorithm has been known. With our results such algorithms follow for both classes. In addition, from our results it follows that all strongly chordal graphs and all chordal bipartite graphs with edge constraints can be listed efficiently.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graph isomorphism completeness for chordal bipartite graphs and strongly chordal graphs

This paper deals with the graph isomorphism (GI) problem for two graph classes: chordal bipartite graphs and strongly chordal graphs. It is known that GI problem is GI complete even for some special graph classes including regular graphs, bipartite graphs, chordal graphs, comparability graphs, split graphs, and k-trees with unbounded k. On the other side, the relative complexity of the GI probl...

متن کامل

The Dilworth Number of Auto-Chordal-Bipartite Graphs

The mirror (or bipartite complement) mir(B) of a bipartite graph B = (X,Y,E) has the same color classes X and Y as B, and two vertices x ∈ X and y ∈ Y are adjacent in mir(B) if and only if xy / ∈ E. A bipartite graph is chordal bipartite if none of its induced subgraphs is a chordless cycle with at least six vertices. In this paper, we deal with chordal bipartite graphs whose mirror is chordal ...

متن کامل

Complement of Special Chordal Graphs and Vertex Decomposability

In this paper, we introduce a subclass of chordal graphs which contains $d$-trees and show that their complement are vertex decomposable and so is shellable and sequentially Cohen-Macaulay.

متن کامل

Subgraph trees in graph theory

The classical clique tree approach to chordal graphs (and, more recently, to strongly chordal graphs) can be generalized to show a common structure for other classes of graphs, including clique graphs of chordal graphs, outerplanar graphs, distance-hereditary graphs, and chordal bipartite graphs. c © 2003 Elsevier B.V. All rights reserved.

متن کامل

Strongly Orderable Graphs a Common Generalization of Strongly Chordal and Chordal Bipartite Graphs

In this paper those graphs are studied for which a so-called strong ordering of the vertex set exists. This class of graphs, called strongly orderable graphs, generalizes the strongly chordal graphs and the chordal bipartite graphs in a quite natural way. We consider two characteristic elimination orderings for strongly orderable graphs, one on the vertex set and the second on the edge set, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009